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LEITER TO THE EDITOR 

Wavevector scaling and the phase diagram of the chiral 
clock model 

Phillip M Duxbury, Julia Yeomans and Paul D Beale 
Department of Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, UK 

Received 7 December 1983 

Abstract. We use a finite-size renormalisation group to study the phase diagram of a spin 
model which exhibits modulated order, the two-dimensional, three-state, chiral clock 
model. In addition to the usual scaling of the correlation length, wavevector scaling is 
shown to provide useful information about the position of the Lifshitz point, and about 
the position and nature of the commensurate to incommensurate and commensurate to 
paramagnetic phase transitions. 

Monolayers of atomic or molecular adsorbates on certain substrates, for example 
krypton on graphite (Chinn and Fain 1977), may exhibit a floating phase for certain 
ranges of coverage and temperature (for recent reviews see Selke et a1 1983, Bak 
1982). In the floating (or incommensurate) phase, the pair correlation function decays 
algebraically, and the characteristic wavevector of these correlations varies continuously 
with coverage and temperature (see for example Bak 1982, Villain 1980). In general, 
the floating phase lies between a low-temperature ordered (or commensurate) phase 
with constant correlations and a high-temperature paramagnetic phase in which the 
correlation function decays exponentially. 

Recently, the finite-size renormalisation group (see Nightingale 1982 for a review) 
has been applied to two models which may exhibit a floating phase (Kinzel 1983, 
Shaub and Domany 1983). The results have not proved easy to interpret. Therefore 
in this letter we use this technique to study the two-dimensional, three-state chiral 
clock model, for which the existence of a floating phase is well established (see for 
example Ostlund 1981, Selke and Yeomans 1982). 

In particular, we emphasise that not only the usual correlation length scaling, but 
also the scaling properties of the wavevector give valuable information about the 
model’s critical behaviour. By using these methods of analysis, the phase diagram is 
determined and the position of the Lifshitz point is established. We comment on the 
scaling behaviour of the correlation length and wavevector and their associated 
exponents on the various phase boundaries. 

The two-dimensional chiral clock model (Ostlund 1981, Huse 1981) is defined by 
the Hamiltonian 

H = - J O C  {COS [ Irr (ni , j -n i , j+ l ) I+~0~[3rr(ni , j -n i+l , j+a)I}  (1) 
i.i 

where the coordinates ( i ,  j )  define a point on a square lattice. The spin variables ni,j 
take the values 0 ,1 ,2.  Jo and A are interaction parameters and the sum is taken over 
nearest-neighbour sites. As A is increased, the competition between ferromagnetic 
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and chiral order along the i direction increases. At finite temperatures this results in 
the occurrence of a phase with a non-zero wavevector, the floating phase. The phase 
diagram which results from our finite-size scaling analysis is shown in figure 1 for 
0.0 C A S  0.5. Results for other values of A follow from symmetry arguments (Ostlund 
1981). 

0 0 1  0 2  0 3  O L  05 
h 

Figure 1. The phase diagram of the two-dimensional, three-state, chiral clock model, found 
from finite-size renormalisation group calculations. C, I and P denote the commensurate, 
incommensurate and paramagnetic phases respectively. 

The Hamiltonian (1) has been the focus of considerable theoretical effort. Ostlund 
(1981) established the existence of the floating phase using free fermion analysis. 
Monte Carlo calculations (Selke and Yeomans 1982) suggest a Lifshitz point at 
AL -- 0.40-0.425, and the Monte Carlo renormalisation group has been applied at 
A = 0.50 (Houlrik etal1983).  Hamiltonian series have been analysed by Howes (1982) 
and Centen et al (1982), and a Hamiltonian mass gap scaling analysis has been 
performed by Von Gehlen and Rittenberg (1983). Important analytical predictions 
using domain-wall arguments and general topological ideas have been presented by 
Garel and Pfeuty (1976), Pokrovsky and Talapov (1979), Schulz (1980), Huse et a1 
(1983), Huse and Fisher (1982) and Haldane et a1 (1983). 

Despite a broad agreement with the phase diagram of figure 1,  several features 
remain controversial. In particular Haldane et af (1983), Schulz (1983) and Von 
Gehlen and Rittenberg (1983) suggest that the Lifshitz point occurs at AL = 0.0 while 
the other authors quoted above predict AL # 0.0. In addition Huse and Fisher (1982) 
have recently suggested that the critical boundary between A = 0.0 and AL should be 
in a new chiral universality class with 

64 X 5 =constant (2) 
where 64 = 4 - 40,40 being the characteristic wavevector of the commensurate phase 
and 4 the wavevector of the system near the phase boundary just inside the paramag- 
netic phase. 5 is the correlation length. No new behaviour of the critical exponents 
along this line was found by Selke and Yeomans (1982) in their Monte Carlo study. 
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The recursion equations for the finite-size renormalisation group follow from 
assuming that the thermodynamic properties of an infinite strip of width N obey 
finite-size scaling exactly (Nightingale 1982). The fixed point is estimated from the 
solutions of 

x,(TX)=X,-l(TX)[(N-1)/Nle, (3) 

where in the case of correlation length scaling X, = 1/&, and for wavevector scaling 
X, = Q,. 8 is an exponent which allows for anisotropic scaling (Kinzel and Yeomans 
1981, Barber 1983) and T: is the estimate of the fixed point which in the limit N +  00 

is expected to converge to the true critical temperature. Unbiased estimates of Tg 
and 8 are found from the behaviour of the function (Shaub and Domany 1983) 

YN(XN) = ln(X,-1/X,)/ln[N/(N- 111. (4) 
The critical exponents U and D, which characterise the correlation length and wavevector 
critical singularities respectively, are estimated from 

where A = 1/ U for correlation length scaling and A = 1/p for wavevector scaling. 
The numerical procedure is to find the largest three eigenvalues of the transfer 

matrix of the chiral clock model using a direct iteration technique. The infinite direction 
of the strip is taken to lie along the direction of modulation to avoid discretisation of 
the wavevectors. The correlation length and wavevector are then given by 

5-' = ln(Ao/lA1l) ( 6 )  

Q =tan-'(Im(Al)/Re(Al))-qo (7) 

and 

where A. and A l  are the largest and the second largest eigenvalues of the transfer 
matrix. We have performed these calculations on strips of width up to eight sites using 
periodic boundary conditions. 

The results for YN( Q) and YN( 5 )  for A = 0.30 are shown in figures 2( a )  and 2( b )  
respectively. The wavevector and correlation length scale at the same temperature, 
indicating that Q + 0 and 5 + 00 at the same temperature. This strongly suggests that 

Figure 2. ( a )  The function YN(Sq) = In(SqN-l/SqN)/ln[N/(N - 113 at A = 0.30 for N = 5,  
6 ,7 ,8 .  ( b )  The function YN(5) =ln(5~/5~-~)/ln[N/(N- l ) ]atA =0.30forN = 5 , 6 , 7 , 8  
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at this value of A there is a direct transition from a modulated paramagnetic phase to 
a normal ordered phase with constant modulation. From figure 2 we also note that 
the two anisotropy exponents are e( 8) = 1 and e( 8q) = 1 and hence & = N and 8q = 1/N 
This is consistent with the chiral conjecture of Huse and Fisher (1982) given in (2). 

The results for Y,(Sq) and YN(&)  at A=0.45, shown in figures 3(a)  and 3(b), 
present a different picture. The correlation lengths scale at a higher temperature than 
that at which the wavevector vanishes. The point at which the correlation length scales 
then indicates a transition from a modulated paramagnetic phase to an ordered phase 
with non-zero wavevector. This, combined with the smooth (as opposed to steplike) 
behaviour of the finite-strip wavevectors inside this phase, suggest that it is a floating 
phase. The temperature at which the wavevectors vanish determines the transition to 
a normal ordered phase (the commensurate to incommensurate transition). It is worth 
noting that the correlation lengths (figure 3(b)) do not obviously scale with the size 
of the system at the commensurate to incommensurate phase boundary. A similar 
behaviour of Y N ( & )  found for a different model (Kinzel 1983) has been interpreted 
as a single anisotropic phase transition from the commensurate to the paramagnetic 
phase. Our previous knowledge of the phase diagram of the chiral clock model suggests 
that this is unlikely and that the behaviour of YN(&) at the commensurate to incom- 
mensurate phase boundary should be attributed to finite size effects. 

01 I 1 , 
0 65 0 70 0 7 5  0 80 06 0 8  1 0  1 2  

kBT IJ, ksTIJo 

Figure 3. ( a )  The function YN(Sq)=In(SqN-I/SqN)/ln[N/(N-l)] at A = O . 4 5  for N =  
5, 6 ,  7 ,  8. ( b )  The function YN(5)=ln(5N/5N_l)/ln[N/(N-1)] at A = 0 . 4 5  for N =  
5, 6 ,  7 ,  8. 

We have carried out a similar analysis for a range of values of A between 0.00 and 
0.50 giving the phase diagram shown in figure 1. In this figure, the commensurate to 
incommensurate phase boundary was located by wavevector scaling and the incom- 
mensurate to paramagnetic phase was located by correlation length scaling. A single 
commensurate to paramagnetic transition is implied when the correlation length and 
wavevector scale at the same temperature. The large error bars on the incommensurate 
to paramagnetic phase boundary reflect the slow convergence of the finite-size estimates 
along this line. The Lifshitz point was located at A L  = 0.40 * 0.03 in good agreement 
with Selke and Yeomans (1982). We now discuss our results for the critical exponents 
calculated from evaluating ( 5 )  at the scaling points given by (4). 

The anisotropy exponents 8 ( 8 q )  and e(&)  are near 1 for A< A L .  For A = A L  there 
is a sharp drop in e(&) reflecting the anisotropic nature of the correlation length scaling 
at the Lifshitz point (Hornreich et a1 1978). For A >  A L ,  e(&) increases again and is 
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not inconsistent with a return to isotropic scaling, although the convergence is slow. 
e( S q )  also becomes anisotropic near A = ALL and decreases further as A + 0.50. 

The correlation length exponent v is found to equal 0.85 f 0.05 (cf the Potts value 
Y = 0.833 . . .) below the Lifshitz point, and hence gives no evidence for a change in 
universality class along this boundary. For A >  AL, v becomes small, reflecting the 
desire of the scaled correlation lengths to become coincident as is expected for a 
massless phase. 

The wavevector exponent 6 is equal to 0.80 * 0.10 for A < AL, which is consistent 
with the chiral scaling conjecture (2) (equation (2) would imply p =  0.833. . .). For 
A > AL, p is near 1.0 but is poorly converged. Despite this poor convergence, the 
value of /? found in this model for the commensurate to incommensurate transition, 
appears to be larger than the value 0.50 calculated by Pokrovsky and Talapov (1979) 
using domain-wall arguments. 

Before concluding, it is worth making some comments about the techniques used 
in this letter. The combination of wavevector scaling and correlation length scaling 
has been used to locate a floating phase and a commensurate to paramagnetic phase 
transition. We note the further possibility that if the wavevector vanishes before the 
correlation length diverges (as the temperature is lowered), then the vanishing of the 
wavevector signals a disorder line. We have performed this analysis at K = 0.25 in the 
two-dimensional ANNNI model and have found the disorder line to be at a temperature 
T = 1.85 f 0.05 (Duxbury et aZ 1984). We also note that while the commensurate to 
incommensurate to paramagnetic phase boundary are well located by our analysis, the 
floating to paramagnetic phase boundary is poorly located. This is not only due to the 
inherent difficulty in scaling correlation lengths at such transitions, but also to the 
proximity of the commensurate to incommensurate phase boundary. It is therefore 
necessary to refine the methods used in locating floating to paramagnetic phase 
transitions in two-dimensional systems of the sort studied here. Work in this direction, 
along with details of the analysis of the two-dimensional three-state chiral clock and 
the two-dimensional ANNNI model will be published elsewhere (Duxbury etaZ1984). 

To conclude, we have used the finite-size renormalisation group to study a rather 
simple model that exhibits modulated order, the two-dimensional three-state chiral 
clock model. It has been shown that wavevector scaling, in addition to correlation 
length scaling, provides an important tool in the study of such systems. 

One of the authors (PMD) thanks Wolfgang Kinzel for several illuminating discussions, 
during which the idea of using wavevector scaling crystallised. Two of us (PMD and 
PDB) wish to thank the SERC for the award of postdoctoral fellowships. 
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